La Persistencia de la Memoria

La Persistencia de la Memoria
Salvador Dalí

lunes, 15 de junio de 2015

Apuntes introductorios a la lectura de Los Presupuestos metafísicos de la ciencia moderna de Edwin Burtt: Copérnico y Kepler. Aspectos metafísicos del progreso de las matemáticas antes de Copérnico.


Resultado de imagen para copernico

Por José Antonio Gómez Di Vincenzo

Hay algo que es muy importante tener presente cuando se indaga acerca del impacto y la densidad de los aportes llevados a cabo por Copérnico en el siglo XVI. Se trata del peso de la geometría en el saber matemático de la época. Kepler creía en ella porque permitía representaciones en la extensión de los argumentos matemáticos. En la antigüedad, la aritmética se desarrolló siguiendo a la geometría muy de cerca. En correspondencia, los antiguos siempre apelaban a ejemplos geométricos para dar cuenta de sus proposiciones o especulaciones. Platón la usaba para graficar la reminiscencia, los pitagóricos definían el mundo como un conjunto de unidades geométricas; una especie de atomismo geométrico retomado luego por el mismísimo Platón en el Timeo. Proporciones limitadas de espacio, cuerpos arquetípicos; como sea, la geometría estaba allí para brindar imágenes espaciales.

En la Edad Media, se retomaron los ejemplos geométricos para dar la imagen más completa de la naturaleza. Así lo entendieron Roger Bacon (1214 - 1294) o Leonardo Da Vinci (1452 – 1519). Este último experimentó y sostuvo todo el tiempo que las conclusiones válidas debían expresarse matemáticamente y representarse geométricamente.

En el siglo XVI, el método geométrico iba de la mano de la mecánica y la física como herramienta de trabajo y no había intelectual que no estuviera de acuerdo con su aplicación. Hasta los adversarios de Copérnico explicaban la caída de los cuerpos y otros fenómenos físicos apelando a representaciones.
Nadie discutía la identidad entre el espacio geométrico y el espacio real. Esta doctrina metafísica atravesaba los estudios de la época. Para los astrónomos esto no representaba ninguna traba. El asunto era “si un conjunto adecuado de figuras geométricas que salvara los fenómenos astronómicos podría usarse con propiedad en el caso de que implicara el rechazo de una teoría especulativa de la estructura física de los cielos”. Pág 46.

Aparece aquí la vieja distinción entre realistas e instrumentalistas: La posición instrumentalista en filosofía es una consecuencia metodológica del fenomenismo, una perspectiva gnoseológica que se caracteriza por negar la posibilidad de que el conocimiento trascienda los fenómenos, es decir los productos de la experiencia humana, y consiga representar la realidad. Consecuentemente, el instrumentalismo se encuentra asociado a diversas variantes de empirismo, entre ellas el positivismo y el pragmatismo. Se trata, pues, de un tipo de antirrealismo, de una posición escéptica que se opone al realismo y, en particular, al realismo metodológico. El realismo científico es una variedad del realismo crítico. Sostiene, básicamente que:

- Existe una realidad objetiva.
- El objetivo primordial de la ciencia es describir y explicar (además de predecir) los hechos de la realidad.
- La ciencia consigue su objetivo en cierta medida y de un modo especial, gracias a la aplicación del método científico. Entonces permite conocer la realidad.

Esta es, obviamente, una caracterización bastante general y vaga. La razón de ello es que hay numerosas variedades de realismo científico, casi tantas como autores realistas científicos, los cuales hacen énfasis en diferentes características de esta concepción.

Algunos intelectuales desde una suerte de empirismo extremo sospechaban de la realidad de las afirmaciones que identificaban el espacio real con el geométrico y sostenían posiciones más instrumentalista creyendo que la apelación al isomorfismo era más que nada metodológica. Estos investigadores preferían apartarse de todo supuesto sobre la naturaleza real en el campo de la astronomía.

No obstante, muchos creían que los astros eran mucho más que perfectos objetos geométricos, que tenían características físicas, que eran cuerpos físicos de alguna clase. El hecho de que fuera imposible saber cómo eran esos cuerpos desde el punto de vista físico (y tecnológico) pudo haber sido la razón por la cual pesó más la identificación con la geometría. Por otra parte, la astronomía siempre se aproximó en la práctica mucho más a la geometría que a la aritmética o a la música, se la denominaba la geometría de los cielos. Es por estas razones que se aceptaba de buen grado que lo que era verdadero para la geometría lo era también para la astronomía.

Pero el asunto desde el punto de vista lógico es que si la astronomía está cerca de la geometría y puede considerarse una rama de las matemáticas, entonces ella también debería participar de la relatividad de los valores matemáticos. En consecuencia, los valores en las cartas celestes deben ser relativos también y por lo tanto, no deberá haber ningún problema en lo que toca a la verdad si se toma uno u otro punto de referencia para todo el sistema espacial.  Este es el argumento que guía la decisión de Copérnico a la hora de cambiar el sistema.

El punto de vista de relatividad en matemática resulta sumamente significativo en astronomía. Las relaciones cambiantes en el espacio sideral que observan los astrónomos  constituyen relaciones regularmente cambiantes entre un punto fijo y los cuerpos celestes. Los astrónomos tomaban como punto fijo el sitio desde donde realizaban la observación. Es desde la Tierra el lugar desde donde se realizaba el mapeo de los cielos y se seguían y estudiaban los movimientos celestes. De aquí surgía la representación en epiciclos, deferentes, excéntricas, ecuantes y demás artilugios imaginarios que eran propios de la astronomía ptolemaica.

Ptolomeo (100 – 170) ya había proclamado en su momento la necesidad de adoptar esquemas geométricos sencillos que salven los fenómenos sin preocuparse por los trastornos metafísicos que pudieran acarrear. Pero fue precisamente su concepción de la estructura física de la Tierra lo que trabó e impidió llevar el relativismo matemático al punto de correrse del geocentrismo. En efecto, el astrónomo alejandrino objetaba de modo contundente la hipótesis del movimiento de la Tierra.

El polaco, por su parte, fue como todos sabemos el primero en patear definitivamente el tablero del geocentrismo, aun conociendo las consecuencias metafísicas que este revolucionario acontecimiento traía aparejadas. Su descubrimiento consistió en que podían obtenerse los mismos resultados en astronomía que los ya obtenidos hasta entonces por medio de una reducción matemática de la complicada geometría ptolemaica y por medio de un cambio de punto de referencia.

Hay hermosos pasajes en los escritos de Copérnico que dan cuenta de su instrumentalismo. El lector puede rastrearlos en los Comentariolus o en sus cartas. En efecto, el astrónomo polaco no se preguntaba sobre el movimiento de la Tierra ni sobre su lugar efectivo en el cosmos. No había ningún compromiso con la verdad o falsedad del heliocentrismo, sólo una apelación metodológica dada por una necesidad de economía en el cálculo y armonía geométrica. La pregunta planteada por Copérnico es simple: ¿Qué movimiento deberíamos atribuir a la Tierra a fin de obtener la más sencilla y armoniosa geometría celeste que esté de acuerdo con los hechos? Dicho en otros términos: ¿Cuál debería ser nuestro punto de referencia, cuál el movimiento de los astros a fin de construir la mejor representación geométrica para salvar los fenómenos?


En síntesis, Copérnico no se comprometía con la verdad de sus representaciones en la realidad, era cauto y apelaba a la visión de los matemáticos y astrónomos para quienes elaboró un modelo sencillo, armonioso, económico que permitía realizar tan buenas anticipaciones como las que posibilitaba el ptolemaico. Nunca quiso violar presupuestos defendidos por el dogma como la velocidad uniforme de los astros en el cielo ni cuestionar ninguna de las afirmaciones sobre la posición de los astros.

No hay comentarios: